Warning: include(/home/quintpub/public_html/journals/prd/includes/code.php) [function.include]: failed to open stream: No such file or directory in /home/quintpub/public_html/journals/prd/abstract.php on line 2

Warning: include() [function.include]: Failed opening '/home/quintpub/public_html/journals/prd/includes/code.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/quintpub/public_html/journals/prd/abstract.php on line 2
Increasing the Thickness of the Collagen Xenogeneic Matrix Prevents Early Matrix Degradation and Improves the Proliferation, Adhesion, and Viability of Human Gingival Fibroblasts and Mesenchymal Stem Cells
Warning: include(/home/quintpub/public_html/journals/prdincludes/05_update/javascript.php) [function.include]: failed to open stream: No such file or directory in /home/quintpub/public_html/journals/prd/abstract.php on line 39

Warning: include() [function.include]: Failed opening '/home/quintpub/public_html/journals/prdincludes/05_update/javascript.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/quintpub/public_html/journals/prd/abstract.php on line 39
Follow Us      

LOGIN

   Official Journal of The Academy of Osseointegration

 
Share Page:
Back

Volume 41 , Issue 4
July/August 2021

Pages e157–e165


Increasing the Thickness of the Collagen Xenogeneic Matrix Prevents Early Matrix Degradation and Improves the Proliferation, Adhesion, and Viability of Human Gingival Fibroblasts and Mesenchymal Stem Cells


Lenin Proaño, DDS/Raissa Borges Curtarelli, MSc/Mariane Beatriz Sordi, MSc/Izabella Thaís Silva, PhD/Gislaine Fongaro, PhD/Márcio Côrrea PhD/Marco Aurélio Bianchini, PhD/Ariadne Cristiane Cabral Cruz, PhD


PMID: 34328477
DOI: 10.11607/prd.5366

Using autogenous grafts in mucogingival surgeries is related to postoperative morbidity and limited tissue availability, and thus xenogeneic matrices are increasingly used. This in vitro study evaluated the influence of xenogeneic collagen matrix thickness on cell adhesion, morphology, viability, proliferation, and matrix degradation. Matrices were divided into three groups: SLC: single layer of Lumina Coat, as commercially available (2-mm thickness); DLC: double layer of SLC (Lumina Coat); and MG: single layer of Mucograft, as commercially available (4-mm thickness). SEM was used to evaluate the matrix surface topographies. To evaluate the cell viability, proliferation, adhesion, and morphology, human gingival fibroblasts (HGF) and stem cells from human exfoliated deciduous teeth (SHED) were used. Cell viability was evaluated through MTS colorimetric method evaluating HGF and SHED on days 1, 3, and 7. Cell proliferation was assessed by PicoGreen assay, evaluating HGF and SHED on days 3 and 7. Sample degradation was evaluated on days 1, 3, 7, 14, 21, 28, and 35. All groups were biocompatible for HGF and SHED, showing viabilities > 70% on days 1, 3, and 7. DCL promoted HGF viabilities similar to MG (P = .2828) and the highest SHED viability (P < .0001) on day 1. DLC also demonstrated HGF and SHED proliferations higher than the positive control (MG; P < .05) on day 7. SLC was completely degraded on day 14, while DLC and MG presented 48.41% and 20.52% of their initial mass, respectively, on day 35. Increasing the matrix thickness improved HGF and SHED viability and proliferation and prevented early matrix degradation. DLC demonstrated better results than SLC and MG concerning matrix degradation and HGF and SHED viability and proliferation.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc

PRD Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help